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Motivation: Diverse Problems, Similar Solutions  

• Use the Philosophy/Theme:  Diverse Problems, Similar Solutions 

 - An Interdisciplinary team approach 

• My technical specialty is statistical signal/image processing, estimation/detection, pattern 

 recognition, sensor fusion and control 

• My application areas are in acoustics, electro-magnetics and particle physics, including: 

 - Seismic oil exploration and seismic treaty verification 

 - Acoustic classification/detection of artificial heart valve damage 

 - Ultrasonic nondestructive evaluation of materials 

 - Acoustic classification/detection of facility activity 

 - Buried land mine detection (IR, Visible Wavelength, GPR, UV) 

• The session organizers invited me to the ASA session on Animal Acoustics  

 in Portland May 2009 – look at it from a signal processing point of view 



Lawrence Livermore National Laboratory 

Examples of  
Dolphin Acoustic Data 

Grace A. Clark 
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Dolphin Whistle Spectrograms Show a Narrowband Frequency-
Modulated Contour that is Smooth and Frequency-Localized* 

* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the  

fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170. 

sound creates spectral patterns resembling narrow vertical
lines. However, since many snapping shrimp produce these
sounds simultaneously, individual “snaps” overlap and the
resulting vertical structures are not as clearly defined as dol-
phin clicks !Fig. 2"d#$.

III. SPECTROGRAM DENOISING

Spectrogram images are a special class of images that
are not the product of conventional optical imaging. Noise in
these images must be defined according to the higher-level
detection task one is attempting. Unlike optical images,
where the image noise usually arises from imperfections in
acquisition or transmission, spectrogram noise is due mainly
to the presence of “undesirable” acoustic sources. Some of
these noise sources are introduced by human activities, while
others are inherent in the recording environment and are de-
scribed in Sec. II.

When detecting dolphin whistles all other acoustic
sources are treated as noise sources; hence the spectral pat-
terns to which they give rise in the resulting spectrograms
are defined as noise. The aim of denoising a spectrogram is
to facilitate the extraction of the desired type of spectral pat-
terns by attenuating all other patterns. This paper introduces
image processing methods to achieve this objective.

As a preprocessing step, the low-frequency tonal sounds
created by mechanical devices such as motors and engines

can easily be removed by high-pass filtering with a cut-off
frequency set slightly below the lowest frequency at which
dolphin whistles are expected "%1.5 kHz#. However, if this
method were to be used for denoising other types of signals,
such as the low frequency calls of baleen whales, the band of
interest would have to be modified accordingly. In the latter
case, the use of a low-pass filter might be appropriate.

A. Denoising in nonimpulsive noise environments

The quality of spectrogram images of recordings made
in pool environments and not excessively corrupted by tran-
sient noise can be improved significantly by an edge-
preserving local-smoothing filter such as the bilateral filter.8

This is essentially a neighborhood averaging filter with the
kernel coefficients computed from the geometric closeness
and the gray level similarity between the neighborhood cen-
ter and the other neighborhood pixels.

If the center pixel of the local neighborhood being pro-
cessed in spectrogram X̂ is X̂!�,m$ and any other pixel be-
longing to the same local neighborhood is denoted by
X̂!��,m�$, the geometric closeness function, c, depends only
on the relative positions of the two pixels x= !�,m$ and �
= !��,m�$. The gray level similarity function s, on the other
hand, is a function of the relative pixel intensities X̂!x$ and
X̂!�$.
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FIG. 2. "Color online# Common spectral patterns.
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Dolphin Whistle Spectrograms Can Contain Strong Harmonics* 

Figure 4 shows how harmonics are suppressed from the
spectrogram by this iterative procedure; the harmonics now
have lower energy, while the fundamental signal retains in-
tensity values similar to the original. This step should be
used selectively since not all whistle recordings capture
strong harmonic patterns. If multiple whistles overlap in
time, and the fundamental !frequency variation" of one
whistle intersects the harmonic pattern of another whistle,
the harmonic suppression algorithm will attenuate the pixels
belonging to the fundamental of the intersecting whistle.
This algorithm should therefore not be used in such situa-
tions.

V. SPECTROGRAM SEGMENTATION

After the spectrogram has been denoised to remove un-
wanted spectral patterns, whistles can be extracted using im-

age segmentation techniques. Although many segmentation
techniques have been proposed, the objective of the current
work is to choose a method applicable to spectrogram im-
ages and simple enough to be efficiently implemented. The
latter objective is important because an on-line tool for
whistle extraction would be very helpful to field scientists
studying dolphins and other marine mammals.

Thus, a three-stage image segmentation technique is
proposed. Thresholding is chosen as the first step as it can be
efficiently implemented and requires only one parameter !the
threshold" to be determined. Furthermore, there are several
known methods of adaptively computing a threshold. Having
the ability to adaptively select a threshold is crucial in spec-
trogram images because the ambient intensity values can
greatly vary from one image to the other, even in spectro-
grams taken from different sections of the same recording.
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FIG. 4. !Color online" Iterative har-
monic suppression.

1164 J. Acoust. Soc. Am., Vol. 124, No. 2, August 2008 Mallawaarachchi et al.: Automated extraction of dolphin whistles

* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the  

fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170. 
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Dolphin Echolocation Clicks are Short-Duration Broadband 
Signals Showing Vertical Line Patterns in the Spectrogram* 

* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the  

fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170. 

sound creates spectral patterns resembling narrow vertical
lines. However, since many snapping shrimp produce these
sounds simultaneously, individual “snaps” overlap and the
resulting vertical structures are not as clearly defined as dol-
phin clicks !Fig. 2"d#$.

III. SPECTROGRAM DENOISING

Spectrogram images are a special class of images that
are not the product of conventional optical imaging. Noise in
these images must be defined according to the higher-level
detection task one is attempting. Unlike optical images,
where the image noise usually arises from imperfections in
acquisition or transmission, spectrogram noise is due mainly
to the presence of “undesirable” acoustic sources. Some of
these noise sources are introduced by human activities, while
others are inherent in the recording environment and are de-
scribed in Sec. II.

When detecting dolphin whistles all other acoustic
sources are treated as noise sources; hence the spectral pat-
terns to which they give rise in the resulting spectrograms
are defined as noise. The aim of denoising a spectrogram is
to facilitate the extraction of the desired type of spectral pat-
terns by attenuating all other patterns. This paper introduces
image processing methods to achieve this objective.

As a preprocessing step, the low-frequency tonal sounds
created by mechanical devices such as motors and engines

can easily be removed by high-pass filtering with a cut-off
frequency set slightly below the lowest frequency at which
dolphin whistles are expected "%1.5 kHz#. However, if this
method were to be used for denoising other types of signals,
such as the low frequency calls of baleen whales, the band of
interest would have to be modified accordingly. In the latter
case, the use of a low-pass filter might be appropriate.

A. Denoising in nonimpulsive noise environments

The quality of spectrogram images of recordings made
in pool environments and not excessively corrupted by tran-
sient noise can be improved significantly by an edge-
preserving local-smoothing filter such as the bilateral filter.8

This is essentially a neighborhood averaging filter with the
kernel coefficients computed from the geometric closeness
and the gray level similarity between the neighborhood cen-
ter and the other neighborhood pixels.

If the center pixel of the local neighborhood being pro-
cessed in spectrogram X̂ is X̂!! ,m$ and any other pixel be-
longing to the same local neighborhood is denoted by
X̂!!! ,m!$, the geometric closeness function, c, depends only
on the relative positions of the two pixels x= !! ,m$ and "
= !!! ,m!$. The gray level similarity function s, on the other
hand, is a function of the relative pixel intensities X̂!x$ and
X̂!"$.
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FIG. 2. "Color online# Common spectral patterns.
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Signals Generated by Mechanical Processes Generally Have Low 
Constant Frequencies => Horizontal Lines at Low Frequency 

* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the  

fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170. 

Low-Frequency Line 

sound creates spectral patterns resembling narrow vertical
lines. However, since many snapping shrimp produce these
sounds simultaneously, individual “snaps” overlap and the
resulting vertical structures are not as clearly defined as dol-
phin clicks !Fig. 2"d#$.

III. SPECTROGRAM DENOISING

Spectrogram images are a special class of images that
are not the product of conventional optical imaging. Noise in
these images must be defined according to the higher-level
detection task one is attempting. Unlike optical images,
where the image noise usually arises from imperfections in
acquisition or transmission, spectrogram noise is due mainly
to the presence of “undesirable” acoustic sources. Some of
these noise sources are introduced by human activities, while
others are inherent in the recording environment and are de-
scribed in Sec. II.

When detecting dolphin whistles all other acoustic
sources are treated as noise sources; hence the spectral pat-
terns to which they give rise in the resulting spectrograms
are defined as noise. The aim of denoising a spectrogram is
to facilitate the extraction of the desired type of spectral pat-
terns by attenuating all other patterns. This paper introduces
image processing methods to achieve this objective.

As a preprocessing step, the low-frequency tonal sounds
created by mechanical devices such as motors and engines

can easily be removed by high-pass filtering with a cut-off
frequency set slightly below the lowest frequency at which
dolphin whistles are expected "%1.5 kHz#. However, if this
method were to be used for denoising other types of signals,
such as the low frequency calls of baleen whales, the band of
interest would have to be modified accordingly. In the latter
case, the use of a low-pass filter might be appropriate.

A. Denoising in nonimpulsive noise environments

The quality of spectrogram images of recordings made
in pool environments and not excessively corrupted by tran-
sient noise can be improved significantly by an edge-
preserving local-smoothing filter such as the bilateral filter.8

This is essentially a neighborhood averaging filter with the
kernel coefficients computed from the geometric closeness
and the gray level similarity between the neighborhood cen-
ter and the other neighborhood pixels.

If the center pixel of the local neighborhood being pro-
cessed in spectrogram X̂ is X̂!! ,m$ and any other pixel be-
longing to the same local neighborhood is denoted by
X̂!!! ,m!$, the geometric closeness function, c, depends only
on the relative positions of the two pixels x= !! ,m$ and "
= !!! ,m!$. The gray level similarity function s, on the other
hand, is a function of the relative pixel intensities X̂!x$ and
X̂!"$.
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FIG. 2. "Color online# Common spectral patterns.
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Ambient Noise in Warm Shallow Water Worldwide is Dominated 
by Broadband Crackling or Popping from Snapping Shrimp* 

* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the  

fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170. 

• One shrimp snapping sound 

    makes a narrow vertical line 

• Many shrimp sounds overlap 

    and are not as clear as dolphin 

    clicks 

sound creates spectral patterns resembling narrow vertical
lines. However, since many snapping shrimp produce these
sounds simultaneously, individual “snaps” overlap and the
resulting vertical structures are not as clearly defined as dol-
phin clicks !Fig. 2"d#$.

III. SPECTROGRAM DENOISING

Spectrogram images are a special class of images that
are not the product of conventional optical imaging. Noise in
these images must be defined according to the higher-level
detection task one is attempting. Unlike optical images,
where the image noise usually arises from imperfections in
acquisition or transmission, spectrogram noise is due mainly
to the presence of “undesirable” acoustic sources. Some of
these noise sources are introduced by human activities, while
others are inherent in the recording environment and are de-
scribed in Sec. II.

When detecting dolphin whistles all other acoustic
sources are treated as noise sources; hence the spectral pat-
terns to which they give rise in the resulting spectrograms
are defined as noise. The aim of denoising a spectrogram is
to facilitate the extraction of the desired type of spectral pat-
terns by attenuating all other patterns. This paper introduces
image processing methods to achieve this objective.

As a preprocessing step, the low-frequency tonal sounds
created by mechanical devices such as motors and engines

can easily be removed by high-pass filtering with a cut-off
frequency set slightly below the lowest frequency at which
dolphin whistles are expected "%1.5 kHz#. However, if this
method were to be used for denoising other types of signals,
such as the low frequency calls of baleen whales, the band of
interest would have to be modified accordingly. In the latter
case, the use of a low-pass filter might be appropriate.

A. Denoising in nonimpulsive noise environments

The quality of spectrogram images of recordings made
in pool environments and not excessively corrupted by tran-
sient noise can be improved significantly by an edge-
preserving local-smoothing filter such as the bilateral filter.8

This is essentially a neighborhood averaging filter with the
kernel coefficients computed from the geometric closeness
and the gray level similarity between the neighborhood cen-
ter and the other neighborhood pixels.

If the center pixel of the local neighborhood being pro-
cessed in spectrogram X̂ is X̂!! ,m$ and any other pixel be-
longing to the same local neighborhood is denoted by
X̂!!! ,m!$, the geometric closeness function, c, depends only
on the relative positions of the two pixels x= !! ,m$ and "
= !!! ,m!$. The gray level similarity function s, on the other
hand, is a function of the relative pixel intensities X̂!x$ and
X̂!"$.
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FIG. 2. "Color online# Common spectral patterns.
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A Dolphin Whistle Corrupted by Snapping Shrimp Noise* 

* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the  

fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170. 

tical spectral patterns. Although the procedure is described
here in its noniterative mode of operation, there is no restric-
tion on using the filter iteratively.

An example of applying this filter to a whistle corrupted
by snapping shrimp noise is shown in Fig. 3 together with
the output of bilateral filtering and an implementation of the
method of SD.6 Bilateral filtering !Fig. 3"b#$ enhances con-
nected high-energy regions irrespective of orientation and
therefore produces poor denoising performance. The method
of SD !Fig. 3"c#$ reduces most of the transients and creates a
“noise trough” around the whistle, but leaves behind a sig-
nificant amount of noise pixels. In comparison, the proposed
transient suppression filter !Fig. 3"d#$ removes most of the
undesired vertically oriented spectral patterns while preserv-
ing the whistle contour.

IV. HARMONIC SUPPRESSION

Whistles often contain harmonics similar in shape to the
fundamental frequency variation with only a shift in fre-
quency, and these can potentially hinder accurate tracing of
the fundamental. The instantaneous frequency of a harmonic

is an integer multiple of the fundamental, a property that can
be exploited to automatically remove it from the spectrogram
image.

A row of pixels in a spectrogram represents the time
variation of a discrete frequency bin f i, and, from bottom to
top, the rows represent a linear increase in frequency. Let us
define a pixel intensity vector Ii that contains the pixels in
the ith row of the spectrogram. The harmonic suppression
update equation for the ith row is expressed as

Ii − Ii − khI j , "10#

where kh is a user-defined scalar constant and the vector I j
contains the pixel values of the jth row for which f j = f i /N,
where N is an integer. For example, if N=2 is used, harmon-
ics which are %2, 4, 6,…& multiples of the base frequency will
be attenuated. Therefore by repeating the procedure for dif-
ferent values of N, most harmonic patterns may be attenu-
ated. A good choice for N is the set of the largest common
divisors of the integer multiples of the fundamental that pro-
duced the harmonic pattern. In practice, N! %2,3 ,5& is used,
and Eq. "10# is applied to every row from top to bottom, and
iterated for each value of N.
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FIG. 3. "Color online# Denoising in the presence of transient noise.
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Two Problematic Dolphin Whistle Spectrograms 

* Mallawaarachchi, S. H. Ong, M. Chitre, E. Taylor, “Spectrogram denoising and automated extraction of the  

fundamental frequency variation of dolphin whistles,” JASA 124 (2), August, 2008, pp.1159-1170. 

picture. Therefore the manual trace contains pixels that are
actually “breaks” in the whistle but are “artificially” linked
together. However, the automated methods fail to identify
these pixels as being part of the whistle and this leads to a
higher number of missing points for such whistles.

Apart from measuring tracing performance, metrics !B

and !C shed light on the values of operational parameters
used in the tracing algorithm. For example, a high percentage
of missed points !B coupled with a low percentage of extra
points !C indicate that the segmentation !or detection"
thresholds are probably set too high, and vice versa. Appro-
priate action can then be taken to determine the optimal point
at which both metrics are sufficiently low. This method was
followed in order to obtain the best performance for all the
algorithms.

This study demonstrates that several different image
processing-based approaches can be considered for extract-
ing whistle contours from recordings. It also confirms that
TSF performs better for recordings made in warm shallow
waters.

VIII. CONCLUSION

This paper introduces an algorithm based on image pro-
cessing techniques to denoise and extract contours of dolphin
whistles from spectrograms. The algorithm presented in Sec.
III is well suited for denoising recordings made in warm
shallow waters, where the ambient noise is dominated by
snapping shrimp. It exceeds the performance of existing
algorithms5,6 by incorporating the pixel values of adjacent
time bins for greater preservation of the signal while effec-
tively attenuating transient spectral patterns. The use of static
directional smoothing kernels yields more efficient imple-
mentations and reduces the processing time of denoising.
The objective method introduced for testing the tracing per-
formance using known time-frequency contours not only en-
ables the selection of a particular algorithm, but can also be
used to tune its parameters.

The modularity of the algorithm enables easy integration
of other techniques at any stage of the process, and further
studies may be carried out to examine combinations that pro-
duce the best results. Although an effort has been made to
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FIG. 9. !Color online" Spectrograms of problematic whistles for tracing.
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Generally, Methods for Classification, Inverse Problems
and Fusion are Either “Data-Based” or “Model-Based”

Data-Based Methods

Little prior knowledge
available (e.g. Physics

Models, priors).

Develop nonparametric
or “Black Box” models

from measured data

only.

Examples:
- Clustering

- K-Nearest Neighbor

- Feature Analysis
- CART (Classification

   and Regression Trees)
- Neural Networks

- Bayesian Classifier(s)

Model-Based Methods

Maximum Likelihood/
Optimal Least Squares 

Bayesian Methods

Use least squares
optimization algorithms

to minimize mean-square

error between model
predictions and observed

measurements.

Examples:
- Wiener/Kalman Filters

   (Linear)

- Extended Kalman Filters
   (Linearized Nonlinear)

Use probabilistic 
sampling algorithms to

estimate likelihoods

and posterior 
probabilities comparing

model predictions and
observed measurements.

Examples:
- Markov Chain Monte

  Carlo

- Sequential Monte Carlo
- Bayesian Belief Nets
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Target Recognition Depends Heavily on the 
Judicious Choice of Signal / Image Features

Selected 
Features 

Pre-
Processing 

Examples: 

•  Register 

•  Segment 

• Threshold 

•  Filter 

• Array Proc 

Feature 

Extraction 

Examples: 

• Signal   
Features 

•  Histogram 
Features 

• Spectral 
Features 

•  Transform 
Features 

Feature 

Selection 

Examples: 

• Clustering 

•  Sequential 
selection 

•  Branch & 
Bound 

Class- 

ification 

Examples: 

• Neural 
Networks/ 

• Pattern 
Recog. 

•  Fuzzy 
Classifiers 

•  Rule Based 
Systems 

•  Model-
Based Algs. 

Sensor 2 

• 

• 

• 

Sensor N 

Signals/Images Signals/Images Features 

Signal  

Acquisition 

Class 1 

Class 2 

• 

• 

• 

Class M 

Class 

Decision 

Signal Representation Signal Understanding

Sensor 1 
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Hypothesis Testing Generates a Receiver Operating  
Characteristic (ROC) Curve 

€ 

P(Detection) = PD γ( ) = f r |θ1( )
γ

∞

∫ dr

€ 

P(False Alarm) = PFA γ( ) = f r |θ2( )
γ

∞

∫ dr

       =   

Decision 

Threshold 

Probability Density Functions (pdf’s) 
f(r) = pdf 

€ 

γ Feature r 
= Decision Statistic 

1 

0 
0 1 

PD = P(Detection) 

PFA 

= P(False Alarm) 

SNR 

ROC Curve 

€ 

γ

€ 

Hypothesis θ1 (Active) : r(t) = s(t) + n(t)
Hypothesis θ2 (Inactive) : r(t) = n(t)

€ 

f (r |θ2)

€ 

f (r |θ1)

t     = Time 

s(t) = Signal of Interest 

v(t) = Noise or “Background” 

r(t) = s(t) + v(t)  = Measurement 

      = Decision Threshold 

€ 

γ
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The ROC Is Computed by Integrating Under the Conditional 
Probability Density Functions for a Given Threshold r0 

   r0  =  

Decision 

Threshold 

f(r | H0) 
f(r | H1) 

   Feature r  

      = Detection Statistic  

f(r) = pdf 

r = Detection Statistic (Grey Scale Values) 

  For Example:  Posterior Probabilities P(H1 | X) or P(H0 | X) 

€ 

P H1 |H0( ) = PFA r0( )

                = f r |H0( )
r0

∞

∫ dr

                =1− PSPEC r0( )

€ 

P H1 |H1( ) = PD r0( ) = f r |H1( )
r0

∞

∫ dr =1− P H0 |H1( ) =1− PMISS (r0)

€ 

P H0 |H1( ) = PMISS r0( ) = f r |H1( )
−∞

r0

∫ dr =1− P H1 |H1( ) =1− PD (r0)

€ 

P H0 |H0( ) = PSPEC r0( ) = f r |H0( )
−∞

r0

∫ dr
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The Confusion Matrix (Contingency Table) Can Be 
Obtained from a Finite Number of Samples 

Truth 
Decision 

€ 

θ1

€ 

θ2

€ 

θ1

€ 

θ2

€ 

P(θ1 | θ1 ) = P(Detection )

=
No. Samples Classified θ1

No. θ1 Samples

€ 

P(θ2 | θ1 ) = P(Miss)

=
No. Samples Classified θ2

No. θ1 Samples
€ 

P(θ1 | θ2 ) = P(False Alarm)

=
No. Samples Classified θ1

No. θ2 Samples

€ 

P(θ2 | θ2 ) = Specificity

=
No. Samples Classified θ2

No. θ2 Samples

€ 

P(θ1 |θ1) + P(θ2 |θ1) =1
P(θ1 |θ2) + P(θ2 |θ2) =1
P(Correct Classification) = P(CC) = P(θ1 |θ1)P(θ1) + P(θ2 |θ2)P(θ2)
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Feature Analysis Is Key to Event Flaw Recognition 

Feature Extraction Feature Selection 

• Raw data z(t), I(x,y) 

• |z(t)|, |I(x,y)| 

• Histogram features 
• Spectral features 

• Ratios of peaks 
• Power spectral density 

• Spectrograms 
• Scalograms (wavelets, 

hierarchical transforms) 
• Higher-order spectra  

• Other features (shape, size) 

• Use displays to obtain physical  

intuition 

• Feature space plots 
• SNR vs. freq. 

• etc. 

• Feature selection algorithms 
to rank order features according 

to class separability measures. 

• Relate feature space to physics 

Grace Clark
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Feature Selection Example:  Automatic Event Picking for Seismic 
Oil Exploration 

Rank Order the Features According to the Change In the 
Bhattacharyya Distance, Using Sequential Feature Selection

background 

Red = Events
White = Background

Increase in the Bhattacharyya Distance
Attributable to Each Feature
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• Morphological
   Filtering
• Size and Shape
   Constraints
•  Performance Estimation:
   P(Correct Classification)

Event Region
 Formation

to Group Pixels
into  Candidate
Event Regions

    Post-
Processing
to Improve
      SNR

Event
Locations

Example
Pre-Processing

Algorithms:

Example
Pixel Classification

Algorithms:

Example
Region Formation

Algorithms:

Example
Post-Processing

Algorithms:

• Filtering
• CFAR (Constant
   False Alarm Rate)
   Detection
• Deconvolution,
  Superresolution

• Feature extraction
• Feature selection
• Probabilistic
   Neural Network
   Classification

   Region growing/
   merging/
   Connected
   Components
   Analysis

Raw
Images

Pre-
Processing

To Improve

SNR,
 Remove

Distortion  

Typical Approaches Involve Pre-processing, Pixel 
Classification, Region Formation and Post-processing 

Pixel
Classification
and Labeling
To Classify

Pixels as Event
or Background
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Are Likely to Involve Supervised Learning

Example
 Feature Types:

    Example
Feature Selection
   Algorithms:

  Example
 Classification
  Algorithms:

Candidate
  Labeling
 Algorithms:

• Histogram / Amplitude
• Texture
• Multi-Resolution
   (DOG, Wavelets, etc.)
• Etc.

• Sequential
   Forward 
   Selection
• Branch and
   Bound

• Probabilistic
   Neural 
   Network (PNN)
• Statistical and/or
   Neural Network
   Classifiers

• Binary image:
   1 = event pixel,
   0 = background pixel
• Posterior
   Probability
   P(Event|X) 
   at Each Pixel

  Feature
Extraction
To Quantify
Events and
Background

    Feature
   Selection
   to Find the
 Best Subset of 
  the Features
    Extracted

      Pixel
Classification
   to Classify 
Pixels as  Event
or Background

   Image
  Labeling
  to Form a
Classified /
Labeled Image

Labeled
Image

Image
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Example Application: 
Automatic Event Picking for Velocity 
Estimation in Seismic Oil Exploration 

Grace A. Clark 
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Oil Companies Search for Geological Structures 
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Common Reflection Point (CRP) 



30 
Grace A. Clark, Ph.D.

Lawrence Livermore National Laboratory 
LLNL-XXX-XXXX



31 
Grace A. Clark, Ph.D.

Lawrence Livermore National Laboratory 
LLNL-XXX-XXXX

We Plot Common Reflection Point (CRP) Panels
in Mosaic Form for Analysis

z 

Offset 
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z 

Offset 
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A Common Offset Panel (COP) 
is a Slice Through 3D Space Along the x and z Directions 

z 

x 
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A Full “Picked” CRP Panel:  
The Automated Picks Are Displayed as Red Lines

The Automated Picks
Match the “Human
Picks”
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Discussion and Summary 

• Similar problems in other disciplines have been worked using  

 statistical signal and image processing algorithms along  

 with the physics 

• Please see the references 

• I hope this presentation has stimulated ideas for interdisciplinary research 
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